Crashworthiness-based lightweight design problem via new robust design method considering two sources of uncertainties
نویسندگان
چکیده
Metamodel-based robust design methods are commonly used to mitigate the influence of parametric uncertainty associated in sheet gauges and material properties in crashworthiness-based vehicle lightweight design. Since the crash performances are highly nonlinear and high-dimensional responses, the prediction error of metamodels inevitably introduces the so-called metamodeling uncertainty in robust design that may mislead to a wrong solution. In this article, a new robust design method considering both parametric uncertainty and metamodeling uncertainty is proposed in the autobody lightweight design problem. Six crash responses in side impact and roof crush are defined as the constraint responses. The results demonstrate that the proposed robust design method is superior to the conservative-surrogatebased robust design method. The final confirmed robust solution achieves 14.39% weight reduction. The method provides an efficient way to reduce the risk of constraint violation and avoids an over-conservative design due to metamodel uncertainty in crashworthiness-based lightweight design problems.
منابع مشابه
Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations
This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...
متن کاملOptimization foam filled thin-walled structures for the crashworthiness capability: Review
In automotive industry, foam-filled structures have aroused increasing interest because of lightweight and capacity of energy absorption. Two types of foam filled thin walled structures such as the uniform foam filled (UF) and the functionally graded foam (FGF). To improve crashworthiness performance, FGF are used to fill structures, unlike existing uniform foam materials. In addition, by seeki...
متن کاملRobust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation
This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...
متن کاملRobust optimal multi-objective controller design for vehicle rollover prevention
Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...
متن کاملTwo-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty
In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...
متن کامل